Systemic delivery of HER2-retargeted oncolytic-HSV by mesenchymal stromal cells protects from lung and brain metastases
نویسندگان
چکیده
Fully retargeted oncolytic herpes simplex viruses (o-HSVs) gain cancer-specificity from redirection of tropism to cancer-specific receptors, and are non-attenuated. To overcome the hurdles of systemic delivery, and enable oncolytic viruses (o-viruses) to reach metastatic sites, carrier cells are being exploited. Mesenchymal stromal cells (MSCs) were never tested as carriers of retargeted o-viruses, given their scarse-null expression of the cancer-specific receptors. We report that MSCs from different sources can be forcedly infected with a HER2-retargeted oncolytic HSV. Progeny virus spread from MSCs to cancer cells in vitro and in vivo. We evaluated the organ distribution and therapeutic efficacy in two murine models of metastatic cancers, following a single i.v. injection of infected MSCs. As expected, the highest concentration of carrier-cells and of viral genomes was in the lungs. Viral genomes persisted throughout the body for at least two days. The growth of ovarian cancer lung metastases in nude mice was strongly inhibited, and the majority of treated mice appeared metastasis-free. The treatment significantly inhibited also breast cancer metastases to the brain in NSG mice, and reduced by more than one-half the metastatic burden in the brain.
منابع مشابه
The Engineering of a Novel Ligand in gH Confers to HSV an Expanded Tropism Independent of gD Activation by Its Receptors
Herpes simplex virus (HSV) enters cells by means of four essential glycoproteins - gD, gH/gL, gB, activated in a cascade fashion by gD binding to one of its receptors, nectin1 and HVEM. We report that the engineering in gH of a heterologous ligand - a single-chain antibody (scFv) to the cancer-specific HER2 receptor - expands the HSV tropism to cells which express HER2 as the sole receptor. The...
متن کاملA Strategy for Cultivation of Retargeted Oncolytic Herpes Simplex Viruses in Non-cancer Cells
The oncolytic herpes simplex virus (HSV) that has been approved for clinical practice and those HSVs in clinical trials are attenuated viruses, often with the neurovirulence gene γ134.5 and additional genes deleted. One strategy to engineer nonattenuated oncolytic HSVs consists of retargeting the viral tropism to a cancer-specific receptor of choice, exemplified by HER2 (human epidermal growth ...
متن کاملPreclinical Therapy of Disseminated HER-2+ Ovarian and Breast Carcinomas with a HER-2-Retargeted Oncolytic Herpesvirus
Oncolytic viruses aim to specifically kill tumor cells. A major challenge is the effective targeting of disseminated tumors in vivo. We retargeted herpes simplex virus (HSV) tropism to HER-2 oncoprotein p185, overexpressed in ovary and breast cancers. The HER-2-retargeted R-LM249 exclusively infects and kills tumor cells expressing high levels of human HER-2. Here, we assessed the efficacy of s...
متن کاملConstruction of a fully retargeted herpes simplex virus 1 recombinant capable of entering cells solely via human epidermal growth factor receptor 2.
A novel frontier in the treatment of tumors that are difficult to treat is oncolytic virotherapy, in which a replication-competent virus selectively infects and destroys tumor cells. Herpes simplex virus (HSV) represents a particularly attractive system. Effective retargeting to tumor-specific receptors has been achieved by insertion in gD of heterologous ligands. Previously, our laboratory gen...
متن کاملInhibition of human tumor growth in mice by an oncolytic herpes simplex virus designed to target solely HER-2-positive cells.
Oncolytic virotherapy exploits the ability of viruses to infect, replicate into, and kill tumor cells. Among the viruses that entered clinical trials are HSVs. HSVs can be engineered to become tumor-specific by deletion of selected genes or retargeting to tumor-specific receptors. A clinically relevant surface molecule is HER-2, hyperexpressed in one fourth of mammary and ovary carcinomas, and ...
متن کامل